
Citation Graph
Release 1

Dec 18, 2019

Contents:

1 Installation and Quickstart 3

2 Task 5

3 Background Research 7

4 Software Design 9
4.1 Basic Functionality . 9
4.2 More Detailed Explanation (with UML Diagrams) . 9
4.3 Tests . 13
4.4 Virtual Environment & Package Installation Management . 13

5 Some Personal Concluding Thoughts 15

6 Documentation 17
6.1 citation-graph . 17
6.2 Indices and tables . 21

Python Module Index 23

Index 25

i

ii

Citation Graph, Release 1

A second project done as part of the Data CDT’s GEOG5995M/ENVS802 module: Programming For Social Scien-
tists.

It is ‘licensed’ under the The Unlicense, and available on my Github.

README Contents: Installation and Quickstart. Task. Background Research. Software Design. Documentation.
Conclusion.

Contents: 1

https://datacdt.org/
https://www.geog.leeds.ac.uk/courses/computing/study/core-python-phd/
https://unlicense.org/
https://github.com/peterprescott/citation-graph

Citation Graph, Release 1

2 Contents:

CHAPTER 1

Installation and Quickstart

To run this on your machine you need to have Git and Python installed. If you don’t, use your system’s recommended
package manager to download them from the command line. (For Windows, use Chocolatey.)

Then clone the Github repository, and navigate into the project folder. You can then immediately run the program:

python --version
git --version
git clone https://github.com/peterprescott/citation-graph
cd citation-graph
pip install pipenv
pipenv shell
pipenv install
python run.py

The program will be initially running on data that I’ve already entered, saved in the SQLite database
citation-graph.db. (Note that the visualized nodes do sometimes get stuck in the top left of their SVG field –
if that happens just click-and-drag them down with your mouse cursor).

To prove the functionality of the program, let’s delete the database file, and then recreate it.

rm citation-graph.db

You can still keep the web-page interface open, but if you try clicking Load More Data, the Python code will report
sqlite3.OperationalError: no such table: texts. But we can quickly recreate the database
(which is generated from .bib files in the bib_files\ folder – more on that later!)

Now you will be able to Load More Data. And indeed if you want you are able to load your own data.

But let’s slow down and start at the beginning. . .

3

https://chocolatey.org/install

Citation Graph, Release 1

4 Chapter 1. Installation and Quickstart

CHAPTER 2

Task

Our brief for this assignment was as follows:

This assignment is a major project building up a model, application, or analysis from scratch. The project
can be either something of your own invention, or one of the [suggested] projects. . . Broadly speaking,
your project should:

- Read in some data.

- Process it in some way.

- Display the results.

- Write the results to a file.

After a brief attempt at one of the suggested projects, I instead decided to do something relating more directly to
my – and potentially anyone’s! – PhD. I decided to create some software to help visualize the webbed citation
relationships of scholarly literature for an area of study. Every PhD begins with a Literature Review, surveying the
state of knowledge in some particular area of scholarly knowledge, and surely a PhD in Data Analytics should at least
try to make use of the tools of data analysis in that essential initial task!

5

https://www.geog.leeds.ac.uk/courses/computing/study/core-python-phd/assessment2/index.html
https://github.com/peterprescott/sitelocation/blob/master/sitelocation.ipynb
https://www.geog.leeds.ac.uk/courses/computing/study/core-python-phd/assessment2/best.html

Citation Graph, Release 1

6 Chapter 2. Task

CHAPTER 3

Background Research

It turned out that what I was imagining is called a citation network or citation graph, which consists of nodes and
edges.

Initial investigation confirmed I wasn’t the only one who might find such a thing useful: someone else (2011) was
asking a similar question on StackExchange. I found a blog post from Mark Longair (2009) showing a graph of papers
related to his thesis, scanned from PDFs he had collected. Andre (2015) had a very neat visualization comparing the
citation networks of two related conferences, using “the force-directed layout engine included in d3.js”, and linking to
some examples: Bostock (2017) and Raper (2014).

All this suggested that what I was imagining would be possible, but would also require enough effort to make it a
worthy project for this assignment.

It also suggested some possible ways of going about the task, both with regards to data collection (webscraping infor-
mation from Google Scholar or Microsoft Academic, or scanning it from journal article PDFs) and data visualization
(using Graphviz or D3.js).

I also discovered Zotero, a “free and open source reference management system” which I hadn’t come across before
starting this course (I finished my undergraduate degree in 2010, and haven’t been writing academic essays in the
meantime). Zotero has a web browser plug-in which makes it simple to extract bibliographic information for literature
referenced on the webpage you are browsing. I found that it uses this Wikipedia API to generate citation data given an
ISBN or DOI.

Zotero allows bibliographic information to be exported as a .bib file, and I found that this can be parsed for Python
by Pybtex: “a BibTeX-compatible bibliography processor written in Python” that can be installed with pip. Zotero
generates citation keys at time of export “using an algorithm that usually generates unique keys” – Better BibTex is a
plug-in for Zotero that gives better control over citation keys.

I also discovered Open Citations, “a scholarly infrastructure organization dedicated to open scholarship” and “engaged
in advocacy for semantic publishing and open citations”. They also have an API, for retrieving data about citations (ie.
not the bibliographic data for an individual item, but the relational data about what each item cites and is cited by), but
its dataset seems currently quite sparse, at least for my field of study.

7

https://en.wikipedia.org/wiki/Citation_network
https://en.wikipedia.org/wiki/Graph_theory
https://physics.stackexchange.com/questions/5569/is-there-a-nice-tool-to-plot-graphs-of-paper-citations
https://longair.net/blog/2009/10/21/thesis-visualization/
http://ongraphs.de/blog/2015/01/dynamic-citation-graph/
https://observablehq.com/@d3/force-directed-graph
http://www.coppelia.io/2014/07/an-a-to-z-of-extra-features-for-the-d3-force-layout/
http://www.graphviz.org/
https://d3js.org/
https://en.wikipedia.org/wiki/Zotero
https://www.zotero.org/download/connectors
https://en.wikipedia.org/api/rest_v1/#/Citation/getCitation
https://www.isbn-international.org/content/what-isbn
https://en.wikipedia.org/wiki/Digital_object_identifier
https://pybtex.org/
https://retorque.re/zotero-better-bibtex/citing/
http://opencitations.net/
http://opencitations.net/index/coci/api/v1

Citation Graph, Release 1

8 Chapter 3. Background Research

CHAPTER 4

Software Design

4.1 Basic Functionality

I decided to try and write a Python program that would be able to read in data from .bib files, from PDF files, and from
the Zotero/Wikipedia API. It would process this data to get bibliographic information (minimally Author and Year of
Publication, but ideally also Title, Item Type, Publisher, etc.) and citation relationships. It would use D3.js Javascript
running on a static web page to display the results as an interactive visualization, obtaining the relevant data from the
Python program by fetch()ing it from an API served by our Python program using the Flask plug-in. The program
would also write the results to a SQLite database file.

4.2 More Detailed Explanation (with UML Diagrams)

The essential software consists of five modules (run.py, db_commands.py, literature.py, reader.
py, and tests.py), a static browser interface (static_gui\index.html, static_gui\graph.css, and
static_gui\script.js), a SQLite database (citation_graph.db). If this database is deleted, any data it
contains will be lost, but a new (initially empty) file with the same name will be generated when the program is next
run.

There are also subfolders: test_output\ contains a logs.txt file with automated reports from the tests that were
run as this program was written; docs\ contains all the necessary files for autogenerating Sphinx documentation (to
rebuild the docs on Windows, one can simply run rebuild_docs.bat); bib_files contains .bib and .pdf files
from which the program reads bibliographic and citational information; and of course .git\ makes sure that we can
keep track of all of our version changes.

There are also a few other odd files: Pipfile and Pipfile.lock are used by pipenv to load and keep
track of the necessary virtual environment, and all its installed packages. uml.bat (Windows) and uml.bash
(Linux) call pyreverse to autogenerate UML diagrams, which are saved as packages.png and classes.
png. chromedriver.exe is necessary for the tests.py module to use selenium to control Chrome and test
that the Flask API is working correctly. .readthedocs.yml provides ReadtheDocs.org with the necessary infor-
mation to generate and host documentation. .gitignore tells git to ignore specified autogenerated files and folders
which don’t need keeping.

9

https://d3js.org/
https://www.netlify.com/pdf/oreilly-modern-web-development-on-the-jamstack.pdf
https://palletsprojects.com/p/flask/
https://docs.python.org/2/library/sqlite3.html
https://readthedocs.org/

Citation Graph, Release 1

4.2.1 static_gui\

index.html, graph.css, script.js

A simple static site interface is used for graphic visualization.

The static site interface (separated of course into its HTML, CSS, and JS components) is influenced by modern JAM-
stack principles which suggest enabling dynamic interactivity on fundamentally static web-pages by using front-end
Javascript in combination with cloud-hosted APIs, which increases speed, security and simplicity compared to the
traditional ‘dynamic web-page’ served live (most commonly with the LAMPstack).

As an example, I have set up a cloud-hosted copy of this program at citations.pythonanywhere.com, and a correspond-
ing static interface on my own static site.

But a static site can also engage with an API served locally, as is the primary intention here.

Examine the source code directly for index.html, graph.css, script.js.

4.2.2 run.py

This is the main file intended to be run. It first opens static_gui/index.html in your default webbrowser, and then
serves the Flask API which is called from that static interface. When called it responds with the required graph data
by returning a JSON object with the necessary nodes and edges.

Read the full documentation here, or examine the source code directly here.

10 Chapter 4. Software Design

https://www.netlify.com/pdf/oreilly-modern-web-development-on-the-jamstack.pdf
https://www.netlify.com/pdf/oreilly-modern-web-development-on-the-jamstack.pdf
https://en.wikipedia.org/wiki/LAMP_(software_bundle
https://citations.pythonanywhere.com
https://geodemographics.co.uk/citations
https://github.com/peterprescott/citation-graph/blob/master/static_gui/index.html
https://github.com/peterprescott/citation-graph/blob/master/static_gui/graph.css
https://github.com/peterprescott/citation-graph/blob/master/static_gui/script.js
https://citation-graph.readthedocs.io/en/latest/run.html
https://github.com/peterprescott/citation-graph/blob/master/run.py
https://raw.githubusercontent.com/peterprescott/citation-graph/master/packages.png

Citation Graph, Release 1

Figure 1: Module Relationships

4.2.3 reader.py

Contains class frameworks for parsing data from .bib files (Bib), .pdf files (Pdf), and bibliographic/citation APIs (Api)
respectively.

Can be run directly from the command-line if there is new data you want to save to the database, like so:

where citationkey is the citation key of a .pdf file (ie. citationkey.pdf) including references (ie. journal article or
bibliography chapter) or .bib file (ie. citationkey_citations.bib or citationkey_references.bib) in the bib_files folder.

Running python reader.py load should load the six bib_files that I have already put in the folder as a demon-
stration.

NB: .bib files can be generated by Zotero, ideally using the BetterBibTex format [authForeIni][authEtAl][year]. Create
a unique Subcollection with the item referred to by the citation key, together with a selection of works it references, or
which cite it, and export it to a .bib file named accordingly.

Parsing .bib files makes use of Pybtex.

Parsing .pdf files makes use of Chris Mattmann’s tika-python library, which allows Python to use the Apache Tika
toolkit for extracting data and metdata from PDFs. This does require that “Java 7+ installed on your system as tika-
python starts up the Tika REST server in the background”. Which is an added complication – but it is quicker, more
accurate, and simpler to use (Boylan-Toomey, 2018) than the other Python PDF libraries.

Once Tika has extracted the text from the PDF, it is then written to a text-file. This is then parsed using *regular expres-
sions* for making sense of that data. Unfortunately the standardization of ‘Harvard style’ is still vague enough that
there is a lot of variation, which makes it difficult to generalize a formula for automatically extracting the references
from a journal article or book. Currently the algorithm is calibrated to read the references from our initial example
starting point: Webber, R., Burrows, R., (2018), The Predictive Postcode; the reference chapter of which is saved as
RWebberBurrows2018.pdf in the bib_files\ folder.

If you run python reader.py pdf citationkey the program will try to extract references from the file in
bib_files\ names citationkey.pdf – note that currently the output from this may not be that accurate. If you
just type python reader.py pdf it will default to extracting references from RWebberBurrows.pdf, as proof of
concept. However, the almost 200 references that are then added do then over-dominate the visualization of citation
relationships!

Read the full documentation here, or examine the source code directly here.

4.2.4 literature.py

Class frameworks for: Text, Book, Chapter, Article, Creator, Citation.

Book, Chapter, and Article are all daughter classes of Text.

All literature classes use Query() from db_commands.py to save data.

Read the full documentation here, or examine the source code directly here.

4.2.5 db_commands.py

Includes a variety of commands to make querying the SQLite database simple, encapsulated in a class framework
called Query.

When run directly it builds the necessary tables to run the Citation Graph program, for if and when the database is
deleted.

4.2. More Detailed Explanation (with UML Diagrams) 11

https://github.com/chrismattmann/tika-python
http://tika.apache.org/
http://tika.apache.org/
https://medium.com/@justinboylantoomey/fast-text-extraction-with-python-and-tika-41ac34b0fe61
https://docs.python.org/3/library/re.html
https://docs.python.org/3/library/re.html
https://citation-graph.readthedocs.io/en/latest/reader.html
https://github.com/peterprescott/citation-graph/blob/master/reader.py
https://citation-graph.readthedocs.io/en/latest/literature.html
https://github.com/peterprescott/citation-graph/blob/master/literature.py

Citation Graph, Release 1

Read the full documentation here, or examine the source code directly here.

4.2.6 tests.py

Runs tests (encapsulated in a Test class) and documents results in test_output/logs.txt.

Read the full documentation here, or examine the source code directly here.

Figure 2: Class Relationships

These UML diagrams were automatically created using pyreverse.

12 Chapter 4. Software Design

https://citation-graph.readthedocs.io/en/latest/db_commands.html
https://github.com/peterprescott/citation-graph/blob/master/db_commands.py
https://citation-graph.readthedocs.io/en/latest/tests.html
https://github.com/peterprescott/citation-graph/blob/master/tests.py
https://raw.githubusercontent.com/peterprescott/citation-graph/master/classes.png
https://www.logilab.org/blogentry/6883

Citation Graph, Release 1

4.3 Tests

Throughout the development of this program, I am trying to practise the principles of Test-Driven Development (eg.
Percival, 2017). This requires that before actually doing anything, we run a test that will check whether what we want
to do is done. We run the test before writing the desired feature, so that it fails (obviously), then we write the feature,
and then the test should run successfully.

4.4 Virtual Environment & Package Installation Management

I have also used Pipenv to manage package installation within a contained virtual environment.

4.3. Tests 13

https://www.obeythetestinggoat.com/
https://www.obeythetestinggoat.com/
https://pypi.org/project/pipenv/

Citation Graph, Release 1

14 Chapter 4. Software Design

CHAPTER 5

Some Personal Concluding Thoughts

I’m fairly happy with how this has turned out, and I think it might be a genuinely useful tool as I begin these four years
of work towards this PhD.

Jimmy Tidey was apparently able to scrape Google Scholar without any trouble to obtain a massive amount of citation
data to graph the key authors in his field, but I found that if I tried to automate any extraction from their citation index,
my program was immediately identified as a bot and my IP address briefly blocked from searching Google Scholar.
Further research confirmed that I had apparently violated their Terms of Service.

My method of visualizing every single text dynamically as a node (whereas, I now note, Tidey shows authors, and
his graphic is static) also means that it doesn’t take too much before the display is overcrowded – just extracting all
the references from Webber and Burrows’ Predictive Postcode threatens to swamp everything else, and d3.js becomes
quite slow with over a hundred nodal points shown.

There are various directions this could be extended with more time. My priority would probably to write a less
precise, but more general, extraction script for other journal articles saved as PDFs – in retrospect, I should have done
that before trying to fine-tune the extraction of all RWebberBurrows2018’s references.

15

https://mystudentvoices.com/scraping-google-scholar-to-write-your-phd-literature-chapter-2ea35f8f4fa1
https://academia.stackexchange.com/questions/2567/api-eula-and-scraping-for-google-scholar

Citation Graph, Release 1

16 Chapter 5. Some Personal Concluding Thoughts

CHAPTER 6

Documentation

Documentation can be automatically generated by Sphinx, which I learnt to use for the previous project. For this to
work we have to make sure we write proper docstrings. We use Google style, which means we require the Napoleon
extension for Sphinx. We also use m2r to convert the README.md file to .rst so that it can be included.

Having generated it with Sphinx, we can also host the documentation freely at ReadTheDocs.org.

6.1 citation-graph

6.1.1 db_commands module

Includes a variety of commands to make querying the SQLite database simple, encapsulated in a class called Query.

When run directly it builds the necessary tables to run the Citation Graph program, for if and when the database is
deleted.

class db_commands.Query(db_filename)
Bases: object

close()
Commits changes and closes connection to database.

create_table(table, columns)
Creates a table.

Parameters

• table (string) –

• columns (tuple of strings) –

• c – database connection.

drop_table(table)
Drops table.

17

https://citation-graph.readthedocs.io/en/latest/?badge=latest
https://www.sphinx-doc.org/en/master/usage/quickstart.html
https://github.com/peterprescott/agent-based-modelling
https://google.github.io/styleguide/pyguide.html#383-functions-and-methods
https://sphinxcontrib-napoleon.readthedocs.io/en/latest/example_google.html
https://sphinxcontrib-napoleon.readthedocs.io/en/latest/example_google.html
https://github.com/miyakogi/m2r
https://citation-graph.readthedocs.io/en/latest/

Citation Graph, Release 1

Parameters

• table (string) –

• c – database connection.

follow_edges(text_key, direction=’cited’, full_node_list=[], full_edge_list=[], iteration=1)
Helper function to get outgoing edges from text and connected nodes.

full(table)
Shows full table.

Parameters table (string) –

get_creator_surnames(text_key)
Returns author(s) for given text key.

Parameters text_key (string) –

json_graph(text_key, radius=1)
Returns nodes and edges for JSON citation graph centred on specified text.

text_key (string): in BetterBibTex format [authForeIni][authEtAl][year]. radius (int): TODO degrees of
separation between focal text and others included.

open()
Opens connection to database.

reboot()
Create necessary tables for Literature classes.

remove_duplicate_rows(table, repeated_value, all_but=1, column=’key’)
Removes rows with specified duplicate value.

Parameters

• table (string) –

• repeated_value –

• c – database connection

• column (string) – default is ‘key’ which will only remove duplicate rows, but any
column could be specified to remove all rows with duplicate values.

remove_row(table, rowid)
Removes specified row from table.

Parameters

• table (string) –

• rowid (int) –

• c – database connection

save_row_to_table(table, row, allow_duplicate=False)
Saves row of data to table.

Parameters data (list) –

search(table, column, value, with_rowid=False)
Searches column in table for specified value.

Parameters

• table (string) –

18 Chapter 6. Documentation

Citation Graph, Release 1

• column (string) –

• value –

• c – database connection

• with_rowid (Boolean) –

test()
Shows that tests are successfully importing db_commands

6.1.2 literature module

Class frameworks for: Text, Book, Chapter, Article, Creator, Citation.

class literature.Article(db_file, key=’?’, publication_year=’?’, title=’?’, journal=’?’, vol-
ume=’?’, edition=’?’, pages=’?’, doi=’?’, references=[], referals=[],
creators=[{’surname’: ’?’, ’initial’: ’?’, ’role’: ’?’}])

Bases: literature.Text

save()
Saves article to SQLite database.

class literature.Book(db_file, key=’?’, publication_year=’?’, title=’?’, publisher=’?’, location=’?’,
number_of_pages=’?’, doi=’?’, isbn=’?’, references=[], referals=[], cre-
ators=[{’surname’: ’?’, ’initial’: ’?’, ’role’: ’?’}])

Bases: literature.Text

save()
Saves Book to SQLite database: to ‘texts’ and ‘books’ tables.

class literature.Chapter(db_file, key=’?’, publication_year=’?’, title=’?’, publisher=’?’, lo-
cation=’?’, pages=’?’, doi=’?’, references=[], referals=[], cre-
ators=[{’surname’: ’?’, ’initial’: ’?’, ’role’: ’?’}], book_key=’?’,
book_title=’?’, book=None, book_creators=[{’surname’: ’?’, ’initial’:
’?’, ’role’: ’?’}])

Bases: literature.Text

remove(remove_book=True)
Removes chapter and (by default) book from SQLite database.

Parameters remove_book (Boolean) – if True, also removes book containing chapter.

save()
Saves chapter to SQLite database: to ‘texts’ and ‘chapters’ tables.

class literature.Citation(db_file, citing, cited)
Bases: object

remove()
Removes citation from SQLite database.

save()
Saves citation to SQLite database.

class literature.Creator(db_file, surname=’?’, initial=’?’)
Bases: object

remove()

save()
Save creator to SQLite database.

6.1. citation-graph 19

Citation Graph, Release 1

class literature.Text(db_file, key=’?’, publication_year=’?’, title=’?’, text_type=’?’, doi=’?’, ref-
erences=[], referals=[], creators=[{’surname’: ’?’, ’initial’: ’?’, ’role’:
’?’}])

Bases: object

A Text has a ‘key’ and a ‘type’.

remove(all_but=0)
Removes Text from SQLite database.

save()
Saves Text to SQLite database.

text_types = ('book', 'chapter', 'article')

6.1.3 reader module

Contains class frameworks for parsing data from .bib files, .pdf files, and bibliographic/citation APIs respectively.

Can be run directly from the command-line if there is new data you want to save to the database, like so: `
python reader.py citationkey ` where citationkey is the citation key of a .pdf file (ie. citationkey.pdf)
including references (ie. journal article or bibliography chapter) or .bib file (ie. citationkey_citations.bib or citation-
key_references.bib) in the bib_files folder. NB: .bib files can be generated by Zotero, ideally using the BetterBibTex
format [authForeIni][authEtAl][year]. Create a unique Subcollection with the item referred to by the citation key,
together with a selection of works it references, or which cite it, and export it to a .bib file named accordingly.

class reader.Api(doi)
Bases: object

TODO: integrate with literature classes so that received data is saved.

data(choose=’all’)
Fetch DOI, citations and reference data from APIs.

class reader.Bib(db_file, key)
Bases: object

Uses pybtex to read .bib files (generated, at least in my case, by Zotero), and uses the data to call the relevant
literature classes, thus saving data to database.

class reader.Pdf(db_file, key, number=20)
Bases: object

refs(print_refs=False)

refs_parsed(check)

6.1.4 run module

This is the main file intended to be run. It first opens static_gui/index.html in your default webbrowser, and then
serves the Flask API which is called from that static interface. When called it responds with the required graph data
by returning a JSON object with the necessary nodes and edges.

run.api(key, radius)
API to return citation graph

run.test()
Confirms Flask App is running for tests.py

20 Chapter 6. Documentation

Citation Graph, Release 1

6.1.5 tests module

Runs tests (encapsulated in a Test class) and documents results in test_output/logs.txt

class tests.Test
Bases: object

api_interactions()
Tests that the DOI & OCI APIs are working by testing for doi=‘10.1186/ar4086’.

bib_reader()
Tests that reader.py is able to read in .bib files by running a check on the _references.bib and _citations.bib
files for @RWebberBurrows2018.

db_commands()
Tests that database commands from ../db_commands.py are working as expected.

Parameters file (string) – file location for db_commands.py

flask_app(page_location, confirmation)
Tests that Flask App is running as expected.

Uses Selenium Webdriver to check Flask App is running as expected.

Parameters

• URL (string) – the address where the Flask App is running.

• page_title (string) – the title of the webpage, as it should be defined by <title>
tags.

lit_classes()
Tests that the literature.py classes are working.

logic()
Shows that the basic logic of my Test framework works.

pdf_reader()
Tests that reader.py is able to read and interpret .pdf files by running a check on the pdf file of references
for @RWebberBurrows2018.

6.2 Indices and tables

• genindex

• modindex

• search

6.2. Indices and tables 21

Citation Graph, Release 1

22 Chapter 6. Documentation

Python Module Index

d
db_commands, 17

l
literature, 19

r
reader, 20
run, 20

t
tests, 21

23

Citation Graph, Release 1

24 Python Module Index

Index

A
Api (class in reader), 20
api() (in module run), 20
api_interactions() (tests.Test method), 21
Article (class in literature), 19

B
Bib (class in reader), 20
bib_reader() (tests.Test method), 21
Book (class in literature), 19

C
Chapter (class in literature), 19
Citation (class in literature), 19
close() (db_commands.Query method), 17
create_table() (db_commands.Query method), 17
Creator (class in literature), 19

D
data() (reader.Api method), 20
db_commands (module), 17
db_commands() (tests.Test method), 21
drop_table() (db_commands.Query method), 17

F
flask_app() (tests.Test method), 21
follow_edges() (db_commands.Query method), 18
full() (db_commands.Query method), 18

G
get_creator_surnames() (db_commands.Query

method), 18

J
json_graph() (db_commands.Query method), 18

L
lit_classes() (tests.Test method), 21

literature (module), 19
logic() (tests.Test method), 21

O
open() (db_commands.Query method), 18

P
Pdf (class in reader), 20
pdf_reader() (tests.Test method), 21

Q
Query (class in db_commands), 17

R
reader (module), 20
reboot() (db_commands.Query method), 18
refs() (reader.Pdf method), 20
refs_parsed() (reader.Pdf method), 20
remove() (literature.Chapter method), 19
remove() (literature.Citation method), 19
remove() (literature.Creator method), 19
remove() (literature.Text method), 20
remove_duplicate_rows() (db_commands.Query

method), 18
remove_row() (db_commands.Query method), 18
run (module), 20

S
save() (literature.Article method), 19
save() (literature.Book method), 19
save() (literature.Chapter method), 19
save() (literature.Citation method), 19
save() (literature.Creator method), 19
save() (literature.Text method), 20
save_row_to_table() (db_commands.Query

method), 18
search() (db_commands.Query method), 18

T
Test (class in tests), 21

25

Citation Graph, Release 1

test() (db_commands.Query method), 19
test() (in module run), 20
tests (module), 21
Text (class in literature), 19
text_types (literature.Text attribute), 20

26 Index

	Installation and Quickstart
	Task
	Background Research
	Software Design
	Basic Functionality
	More Detailed Explanation (with UML Diagrams)
	Tests
	Virtual Environment & Package Installation Management

	Some Personal Concluding Thoughts
	Documentation
	citation-graph
	Indices and tables

	Python Module Index
	Index

